• Users Online: 634
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2019  |  Volume : 8  |  Issue : 2  |  Page : 253-261

Development of docetaxel-loaded folate-modified Poly(lactic-co-glycolic acid) particles


1 Laboratory of Nanocapsules and Targeted Delivery of Drugs, National Research Centre “Kurchatov Institute”, Moscow, Russia
2 Department of Pharmaceutical technology, Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia

Correspondence Address:
Mr. Yuri I Poltavets
Laboratory of Nanocapsules and Targeted Delivery of Drugs, National Research Centre, “Kurchatov Institute”, Moscow.
Russia
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrptps.JRPTPS_64_19

Rights and Permissions

Background: Poly(lactic-co-glycolic acid) (PLGA) particles with small vector molecules are used for targeted delivery of anticancer agents. To be effective, they must be small, noncytotoxic, sterile, and stable. Aim: The aim of this study was to prepare docetaxel-loaded folate-modified PLGA-based nanoparticles (FD-Dtx-NPs) and to assess their as parenteral folate-receptor targeted delivery systems during γ-sterilization and long-term storage. Materials and Methods: NPs were prepared by oil/water single emulsion-solvent evaporation method and simultaneous loading of polymer particles with docetaxel and folic acid derivative. NPs’ physicochemical characteristics and antitumor activity were assessed. Findings: FD-Dtx-NPs presented uniform characteristics over repeated measurements: ~250 nm size, <0.100 polydispersity index, and >2.5% docetaxel content in the finished lyophilizate. The observed slow docetaxel release from FD-Dtx-NPs was acceptable for proposed usage. γ-irradiated NPs were sterile under all tested protocols and maintained their physicochemical properties at a 10-kGy cumulative dose, 0.500 Gy/s dose rate, and 5.57-h exposure. No significant differences were observed in physicochemical characteristics of FD-Dtx-NPs over 12 months. Finally, FD-Dtx-NPs showed a high anticancer activity in vitro. Conclusion: The proposed method generates FD-Dtx-NPs with reproducible characteristics, high activity, and elevated stability during the long-term storage. Results of γ-sterilization and stability studies may be valuable for the development of polymer-based drugs.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed50    
    Printed2    
    Emailed0    
    PDF Downloaded10    
    Comments [Add]    

Recommend this journal