• Users Online: 50
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLE
Year : 2020  |  Volume : 9  |  Issue : 1  |  Page : 19-24

In vitro cytotoxic activity of Verbascum alceoides against cervix carcinoma cells


1 Department of Pharmacognosy, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
2 Department of Pharmaceutical Biotechnology, and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran

Correspondence Address:
Dr. Vajihe Akbari
Department of Pharmaceutical Biotechnology, Isfahan University of Medical Sciences, Isfahan.
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrptps.JRPTPS_65_19

Rights and Permissions

Background: Verbascum species showed various pharmacological activities including anti-inflammatory, antitussive, antiulcerogenic, immunomodulatory, antimicrobial, antimalarial, antioxidant, and anticancer activities. Objectives: The aim of this work was to evaluate cytotoxicity of different fractions of Verbascum alceoides, which belongs to this genus. Materials and Methods: Aerial parts of this plant were collected from Doveiseh area in Kordestan province. The plant was extracted using a four-step extraction method with increasing solvent polarity (i.e., hexane, dichloromethane, chloroform-methanol [9:1], and methanol). The methanol extract was finally separated between water and butanol. Hexane, dichloromethane, chloroform-methanol, butanol, and aqueous partitions were then subjected to cytotoxicity evaluation. Showing the most potent cytotoxic effects, the butanolic partition was further fractionated by medium-performance liquid chromatography and similar eluates were pooled to prepare five final butanolic fractions, named A–E. Results: In vitro cytotoxicity of these fractions against human cervical epithelioid carcinoma (HeLa) and human umbilical vein endothelial cell (HUVEC) was evaluated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Fractions D, E, and A showed a significant and dose-dependent inhibition of cell proliferation (half maximal inhibitory concentration [IC50] of 30, 39.8, and 188.6 µg/mL, respectively). According to the preliminary thin-layer chromatography analysis, these cytotoxic effects may be mainly due to presence of saponin and flavonoid compounds. Conclusion: Future studies will be aimed to isolate and purify active constituents and investigate the effect of them on more different kinds of cancer cells.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed628    
    Printed60    
    Emailed0    
    PDF Downloaded138    
    Comments [Add]    

Recommend this journal