• Users Online: 658
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
ORIGINAL ARTICLES
Year : 2021  |  Volume : 10  |  Issue : 1  |  Page : 5-14

Evaluation of the matrix-forming ability of Chrysophyllum albidum Linn fruit gum in sustained-release tablet formulations


1 Department of Pharmaceutics and Pharmaceutical Technology, Ahmadu Bello University, Zaria, Nigeria
2 Department of Pharmaceutical Technology and Raw Materials Development, National Institute for Pharmaceutical Research and Development (NIPRD), Idu Industrial Area, Abuja, Nigeria

Correspondence Address:
Dr. Olubunmi J Olayemi
Department of Pharmaceutical Technology and Raw Materials Development, National Institute for Pharmaceutical Research and Development (NIPRD), Idu Industrial Area, P.M.B. 21 Garki, Abuja-FCT.
Nigeria
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jrptps.JRPTPS_13_20

Rights and Permissions

Background: Plant gums are extensively being exploited as pharmaceutical excipients due to the ease of availability, biodegradability, and reduced costs. Aim: This study investigated the application of the fruit gum of Crysophyllum albidum (CFG) as a matrix former in the formulation of chlorpheniramine maleate and theophylline hydrochloride tablets. Materials and Methods: The gum was extracted using acetone and evaluated for flow, swelling, and hydration capacity. Effects of temperature on CFG and drug compatibility were evaluated using differential scanning calorimetry (DSC). Granules containing CFG at 10, 20, and 30% w/w were prepared using the wet granulation method and evaluated for flow properties. Compressed tablets were evaluated for uniformity of weight, hardness, friability, and drug content. In vitro drug release studies were carried out in simulated gastric (pH 1.2) and simulated intestinal (pH 6.8) fluids. Pearson’s similarity correlations were used to analyze results. Results: CFG had a swelling capacity of 22% and hydration capacity of 1.44 with an angle of repose of 30o and Carr’s index of 7.6 signifying good flow. DSC thermogram returned an endothermic glass transition peak at 72.1oC with no appreciable shifts in the peak when CFG was incorporated into the drug. Tablet hardness and friability were concentration dependent with values of 6.5–8.5kg F and 0.04–0.4%, respectively; drug content was within official specifications. Formulations containing 30%w/w CFG sustained drug release for over 12 h and showed better ability to control drug release than HPMC at same concentration. Conclusion: This study shows the propensity of CFG to be used in the formulation of sustained-release tablet formulations.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed547    
    Printed0    
    Emailed0    
    PDF Downloaded94    
    Comments [Add]    

Recommend this journal